










somes to the Golgi apparatus after internalization (Fig. 7).
Fifth, we observed that soluble glucans do not colocalize with
macrophage lysosomes. Finally, we present evidence that the
Dectin-1/glucan complex dissociates early after internaliza-
tion in the macrophage endosome, but when the glucan is
trafficked to the Golgi apparatus it again colocalizes with
Dectin-1 (Fig. 7).

The evidence for internalization of the Dectin-1/GP com-
plex via a clathrin-dependent mechanism is reasonable and
clear cut; however, the role of lipid rafts and caveolin-1/
caveosomes in internalization of the receptor/ligand complex
is more complex. Our data demonstrate that the loss of lipid
rafts results in a reduction in cell surface Dectin-1 and a
decrease in glucan internalization. These data suggest that
lipid rafts regulate macrophage Dectin-1 cell surface expres-
sion and thus glucan internalization. Caveolin-1 is known to
interact with signaling molecules (Jayanthi et al., 2004; Wil-
liams and Lisanti, 2004). We present the first evidence that
caveolin-1 interacts with the PRR Dectin-1. It is possible that
Dectin-1 is normally sequestered into caveolae/lipid rafts via
its interaction with caveolin-1. Disruption of lipid rafts may
lead to a decrease in overall membrane Dectin-1 levels. Main-
tenance of cell surface Dectin-1 levels by lipid rafts may have
important consequences for the Dectin-1-mediated cellular
responses to glucan. Further studies are necessary to deter-
mine the effect of lipid rafts on the immune response medi-
ated by Dectin-1 in response to glucans or fungal infection.

This study also demonstrated that soluble �-glucans are

transported by early endosomes to the Golgi apparatus where
they remain for at least 24 h. It is interesting to note that
soluble glucans are transported to the Golgi apparatus after
internalization rather than to lysosomes as has been reported
previously for particulate glucans (McCann et al., 2005). It is
not clear why soluble and particulate glucans would be differ-
entially processed by macrophages, but this may relate to the
differences in the physical state of the glucans, i.e., soluble
versus particulate, and the mechanisms by which each macro-
molecule is internalized, i.e., endocytosis versus phagocytosis.
Regardless, by bypassing lyosomal structures, pathogens can
avoid intracellular killing mechanisms (Norkin, 2001). This
could be interpreted to mean that glucans exposed in the cell
wall of fungal pathogens may be a mechanism whereby the
pathogen can co-opt macrophage cellular processes to avoid
intracellular killing by macrophages. As an example, certain
fungi, including C. albicans, are able to avoid lysosomal degra-
dation to survive and multiply within macrophages after phago-
cytocis (Bodey, 2000). Endosomal trafficking of glucans to the
Golgi apparatus, rather than lysosomes, might explain how
fungal pathogens are able to survive within macrophages after
internalization. It is also possible that our results differ from
those of McCann et al. (2005) because of the method used to
detect localization. We used confocal microscopy, which as-
sesses colocalization with greater accuracy than the wide field
fluorescence microscopy used by McCann et al. With wide-field
fluorescent microscopy the entire depth of the specimen is illu-
minated and out-of-focus signals can interfere. Confocal micros

Fig. 4. Murine macrophages do not transport glucans via lysosomes.
Thioglycollate-elicited macrophages were incubated with fluorescent-la-
beled �-glucan for 3 h at 4°C, and then for 0 to 24 h at 37°C. The cells were
stained for lysosomes by using Lamp1 antibody, and the images were
obtained by confocal microscopy. The numbers shown in white in the
masked images (Mask column) are the mask intensity rate for the images
and indicate the degree of colocalization. A mask intensity rate of �40%
was considered indicative of colocalization. Representative maximum
projection images of four to eight replicates from two to four independent
experiments are shown.

Fig. 5. Glucans are trafficked to the Golgi apparatus in murine macro-
phages. Thioglycollate-elicited macrophages were incubated with fluores-
cent-labeled �-glucan for 3 h at 4°C, and then for 0 to 24 h at 37°C. The
cells were stained for Golgi by using Golph4 antibody, and the images
were obtained by confocal microscopy. The numbers shown in white in the
masked images (Mask column) are the mask intensity rate for the images
and indicate the degree of colocalization. A mask intensity rate of �40%
was considered indicative of colocalization. Representative maximum
projection images of four to eight replicates from two to four independent
experiments are shown.
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copy illuminates a single, focused area of the specimen, so only
signals from the focused plane are detected. This results in a
much crisper image and reduces the possibility of “false posi-
tive” colocalization. Further studies using highly purified par-
ticulate glucan and confocal microscopy are necessary to deter-
mine whether particulate and soluble glucans are differentially
internalized and trafficked within macrophages.

We observed that soluble glucans are trafficked to the
Golgi apparatus. Localization to the Golgi apparatus is not
an uncommon fate for pathogen-associated molecular pat-
terns, because both lipoteichoic acid and lipopolysaccharide
are transported to the Golgi apparatus after internalization
(Thieblemont and Wright, 1999; Latz et al., 2002; Trianta-
filou et al., 2004). Indeed, Le Roy and Wrana, 2005 have
reported that there are distinct caveolar endocytic pathways
that target the Golgi (Le and Nabi, 2003). As part of this
study, we asked the question what happens to the glucans
once they have reached the Golgi? Mammalian cells do not
possess the enzymes necessary for glucan catabolism (Stone
and Clarke, 1992). We speculated that there are two possi-
bilities for the fate of glucans after they reach the Golgi. The
glucans may remain in the Golgi or another cellular compart-
ment for the life of the cell, or they may be transported out of
the macrophage. We found that glucans associate with the
Golgi apparatus for at least 24 h, and we found no evidence
for glucan release by the cell during this time. This suggests
that glucans remain within macrophages, and perhaps other
cells, for prolonged periods of time. This could explain, in
part, why the biological effects of soluble glucans have been
observed for up to 1 week after a single in vivo administra-
tion, even though the pharmacokinetic data indicate that
soluble glucans are rapidly cleared from the systemic circu-
lation after parenteral administration (Rice et al., 2004).

Herre et al. (2004) have demonstrated that upon internal-
ization of the Dectin-1/glucan complex Dectin-1 is degraded

Fig. 6. The Dectin-1/glucan complex dissociates after internalization in
murine macrophages. Thioglycollate-elicited macrophages were incu-
bated with fluorescent-labeled �-glucan for 3 h at 4°C, and then for 0 to
24 h at 37°C. The cells were stained for Dectin-1, and the images were
obtained by confocal microscopy. The numbers shown in white in the
masked images (Mask column) are the mask intensity rate for the images
and indicate the degree of colocalization. A mask intensity rate of �40%
was considered indicative of colocalization. Representative maximum
projection images of four to eight replicates from two to four independent
experiments are shown.

Fig. 7. Schematic showing the proposed
mechanisms for internalization and traf-
ficking of soluble glucans by murine mac-
rophages. In this model, soluble glucan is
bound by membrane-associated Dectin-1,
and the Dectin-1/glucan complex is rap-
idly internalized via a clathrin-dependent
mechanism. The Dectin-1/glucan complex
is then trafficked to the Golgi apparatus
via endosomes. However, the Dectin-1/
glucan complex dissociates after early in-
ternalization, followed by glucan colocal-
izing with Golgi-associated Dectin-1 at
later time points. BG, �-glucan.
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within lysosomes and new receptor must be synthesized be-
fore the return of Dectin-1 to the cell surface. The present
study has shown that glucans are not trafficked to lysosomes,
which was an unanticipated finding. Another unanticipated
finding was that Dectin-1 and glucan separate as soon as 5
min after internalization. However, we did find that glucan
and Dectin-1 colocalized at later time intervals. At these
later time points the glucans and Dectin-1 were found in
association with the Golgi apparatus. It is possible that this
second phase of Dectin-1/glucan association represents Golgi-
associated Dectin-1 that may be newly synthesized and has
not yet been transported to the cell surface. It is not clear
whether the Golgi-associated glucan is bound to the Golgi-
associated Dectin-1 or whether the two are just in close
proximity. Thus, we cannot say with certainty whether Dec-
tin-1 binds glucans intracellularly, but these data suggest
the possibility that this may occur.

In conclusion, we present evidence for a new and novel
mechanism by which �-glucans are internalized and traf-
ficked within macrophages. Our data demonstrate that wa-
ter-soluble glucans, derived from a fungal source, are inter-
nalized within macrophages and trafficked to the Golgi
apparatus via a clathrin-dependent mechanism that is neg-
atively regulated by lipid rafts. These data also demonstrate
that the intracellular processing of fungal glucans by macro-
phages is much more complex than previously thought.
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